리포트 논문 자기소개서 이력서 시험자료 서식 PPT양식 표지/속지

바이오디젤생산량을 증폭시키기 위한 방안(리뷰한논문)

저작시기 2018.06 |등록일 2018.09.19 워드파일MS 워드 (docx) | 38페이지 | 가격 6,000원

목차

I. 서 언
1. TAG는 무엇인가
2. BIODIESEL의 장단점
3. TAG합성 및 분해과정
4. TAG생합성 증가를 위한 전략 (3가지)

Ⅱ. 결과 및 의미
1. WRI 유전자를 이용한 PUSH 전략
2. DGAT1 유전자르 이용한 PULL 전략
3. SDP1 유전자를 이용한 PROTECT 전략

Ⅲ. 결론

본문내용

I. 서 언

TAG는 식물에서 생산하고 자연에서 얻을 수 있는 많은 에너지를 소유하고 풍부한 탄화수소입니다. 화학적으로 기존디젤 구조와 유사하여 사용하기 쉽습니다. 그러나, 식물성오일 TAG는 지방산으로부터 에스터반응을 통해 글리세롤과 지방산메틸에스테르로 분리합니다. 이때 분리된 지방산메틸에스테르가 바이오디젤로 사용됩니다. 바이오디젤은 기존 디젤에 비해 많은 장점을 가지고 있습니다. 하지만 단점또한 가지고 있는데 바로 바이오 디젤을 만들기 위한 연료의 원료가 부족하다는 점입니다. 그래서 바이오 디젤이 확산되기 위해서는 식물성오일의 생산량을 증가시켜야합니다. 이런한 단점을 극복하기 위하여 저는 오일함량을 증가시키는 방안을 종합하여 정리하였습니다. 먼저 식물에서 지방산을 합성하는 과정과 합성된 지방산을 가지고 TAG을 합성하는 방법을 이해가 필요합니다. 그리고 최근에는 식물의 종자가 아닌 다른 영양조직에서도 오일함량을 증가시키는 방안이 연구되어지고 있습니다. 저는 LEC2 효소를 이용한 증가방안을 정리하였습니다. 이러한 여러방안을 종합하여 TAG생합성 및 조절에 관여하는 유전자들의 과다발현체 또는 억제방법을 통해 보다 많은 바이오디젤생성에 기여할 수 있는 가능성을 확인하였습니다.

TAG는 무엇일까
Figure1(TAG의 Structure)
에너지 독립에 대한 필요성 증가와 이산화탄소 수준의 증가에 대한 우려의 증가는 우리의 현재 화석 연료 소비를 줄일 수 있는 재생 가능 연료에 대한 탐색을 증가했다. 그러한 연료 중 하나는 식물성 기름에서 추출한 지방산의 메틸에스테르로 구성된 바이오디젤이다. 동물성 지방을 포함한 다른 것도 가능하다. 식물유는 주로 TAG이 구성분자이고 에스테르화 된 3개의 지방산사슬로 구성되어있다. 지방아실체인은 가솔린과 디젤에서 발견되는 분자의 대부분을 구성하는 지방족 탄화수소와 화학적으로 유사하다. 가솔린의 탄화수소는 5~12개의의 탄소 원자를 가지고 있으며, 그리고 휘발성의 연료는 공기와 혼합하여 불을 붙여 기존 엔진에서 점화한다.

참고 자료

Kinney, A.J. and Clemente, T.E. (2005) Modifying soybean oil for enhanced performance in biodiesel blends. Fuel Process. Technol. 86, 1137–1147.
Klopfenstein, W.E. (1985) Effect of molecular-weights of fatty-acid esters on cetane numbers as diesel fuels. J. Am. Oil Chem. Soc. 62, 1029–1031.
Knapp, S.J. and Crane, J.M.(2000a) Registration of high oil Cupheagermplasm VL186. Crop Sci. 40, 301–301.
Knapp, S.J. and Crane, J.M.(2000b) Registration of reduced seed shattering Cuphea germplasm PSR23. Crop Sci. 40, 299–300.
Knothe, G. (2005) Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Process. Technol. 86, 1059–1070.
Knothe, G. and Dunn, R.O.(2003) Dependence of oil stability index of fatty compounds on their structure and concentration and presence of metals. J. Am. Oil Chem. Soc. 80, 1021–1026.
Knothe, G. and Steidley, K.R. (2005) Kinematic viscosity of biodiesel fuel components and related compounds. Influence of compound structure and comparison to petrodiesel fuel components. Fuel, 84, 1059–1065.
Knothe, G., Van Gerpen, J.H. and Krahl, J. (2005) The Biodiesel Handbook. Champaign, IL: AOCS Press.
Laporte, M.M., Galagan, J.A., Shapiro, J.A., Boersig, M.R., Shewmaker, C.K. and Sharkey, T.D. (1997) Sucrose-phosphate synthase activity and yield analysis of tomato plants transformed with maize sucrose-phosphate synthase. Planta, 203, 253–259.
Lardizabal, K.D., Mai, J.T., Wagner, N.W., Wyrick, A., Voelker, T. and Hawkins, D.J. (2001) DGAT2 is a new diacylglycerol acyltransferase gene family: purification, cloning, and expression in insect cells of two polypeptides from Mortierella ramannianawith diacylglycerol acyltransferase activity. J. Biol. Chem. 276, 38862–38869.
Lardizabal, K.D., Bennett, K.A. and Wagner, N.W.(2004) Diacylglycerol Acyltransferase Nucleic Acid Sequences and Associated Products. United States Patent Application 20040107459.
Lee, I., Johnson, L.A. and Hammond, E.G. (1995) Use of branched-chain esters to reduce the crystallization temperature of biodiesel. J. Am. Oil Chem. Soc. 72, 1155–1160.
Lee, I., Johnson, L.A. and Hammond, E.G. (1996) Reducing the crystallization temperature of biodiesel by winterizing methyl soyate. J. Am. Oil Chem. Soc. 73, 631–636.
Lu, Y. and Sharkey, T.D.(2004) The role of amylomaltase in maltose metabolism in the cytosol of photosynthetic cells. Planta, 218, 466–473.
Maeda, H., Song, W., Sage, T.L. and DellaPenna, D.(2006) Tocopherols play a crucial role in low-temperature adaptation and phloem loading in Arabidopsis. Plant Cell, 18, 2710–2732.
Masaki, T., Mitsui, N., Tsukagoshi, H., Nishii, T., Morikami, A. and Nakamura, K. (2005) ACTIVATOR of Spo(min):: LUC1/WRINKLED1 of Arabidopsis thalianatransactivates sugar-inducible promoters. Plant Cell Physiol. 46, 547–556.
Mayer, K.M. and Shanklin, J. (2007) Identification of amino acid residues involved in substrate specificity of plant acyl-ACP thioesterases using a bioinformatics-guided approach. BMC Plant Biol.7, 1.
McCormick, R.L., Graboski, M.S., Alleman, T.L. and Herring, A.M. (2001) Impact of biodiesel source material and chemical structure on emissions of criteria pollutants from a heavy-duty engine. Environ. Sci. Technol. 35, 1742–1747.
Milcamps, A., Tumaney, A.W., Paddock, T., Pan, D.A., Ohlrogge, J. and Pollard, M. (2005) Isolation of a gene encoding a 1,2-diacylglycerol-sn-acetyl-CoA acetyltransferase from developing seeds of Euonymus alatus. J. Biol. Chem. 280, 5370–5377.
Nikolau, B.J., Ohlrogge, J.B.and Wurtele, E.S. (2003) Plant biotin-containing carboxylases. Arch. Biochem. Biophys. 414, 211–222.
Ogas, J., Cheng, J.C., Sung, Z.R. and Somerville, C.(1997) Cellular differentiation regulated by gibberellin in the Arabidopsis thaliana picklemutant. Science, 277, 91–94.
Ogas, J., Kaufmann, S., Henderson, J. and Somerville, C. (1999) PICKLE is a CHD3 chromatin-remodeling factor that regulates the transition from embryonic to vegetative development in Arabidopsis. Proc. Natl Acad. Sci. USA, 96, 13839–13844.
Ohlrogge, J.B. and Jaworski, J.G. (1997) Regulation of fatty acid synthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 109–136.
Paul, M.J. and Foyer, C.H.(2001) Sink regulation of photosynthesis. J. Exp. Bot.52, 1383–1400.
Plaxton, W.C. and Podesta, F.E. (2006) The functional organization and control of plant respiration. Crit. Rev. Plant Sci. 25, 159–198.
Pollard, M.R., Anderson, L., Fan, C., Hawkins, D.J. and Davies, H.M. (1991) A specific acyl-ACP thioesterase implicated in medium-chain fatty-acid production in immature cotyledons of Umbellularia californica. Arch. Biochem. Biophys. 284, 306–312.
Ragauskas, A.J., Nagy, M., Kim, D.H., Eckert, C.A., Hallett, J.P. and Liotta, C.L.(2006) From wood to fuels: integrating biofuels and pulp production. Ind. Biotechnol. 2, 55–65.
Riesmeier, J.W., Willmitzer, L. and Frommer, W.B.(1994) Evidence for an essential role of the sucrose transporter in phloem loading and assimilate partitioning. EMBO J. 13, 1–7.
Roesler, K., Shintani, D., Savage, L., Boddupalli, S.and Ohlrogge, J. (1997) Targeting of the Arabidopsis homomeric acetyl-coenzyme A carboxylase to plastids of rapeseeds. Plant Physiol.113, 75–81.
Rolland, F., Baena-Gonzalez, E. and Sheen, J.(2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu. Rev. Plant Biol. 57, 675–709.
Routaboul, J.M., Benning, C., Bechtold, N., Caboche, M. and Lepiniec, L. (1999) The TAG1 locus of Arabidopsis encodes for a diacylglycerol acyltransferase. Plant Physiol. Biochem. 37, 831–840.
Russin, W.A., Evert, R.F., Vanderveer, P.J., Sharkey, T.D. and Briggs, S.P. (1996) Modification of a specific class of plasmodesmata and loss of sucrose export ability in the sucrose export defective1 maize mutant. Plant Cell, 8, 645–658.
Ruuska, S.A., Girke, T., Benning, C. and Ohlrogge, J.B. (2002) Contrapuntal networks of gene expression during Arabidopsis seed filling. Plant Cell, 14, 1191–1206.
Ryan, T.W., Dodge, L.G. and Callahan, T.J. (1984) The effects of vegetable oil properties on injection and combustion in two different diesel engines. J. Am. Oil Chem. Soc. 61, 1610–1619.
Sakaki, T., Kondo, N. and Yamada, M. (1990a) Pathway for the synthesis of triacylglycerols from monogalactosyldiacylglycerols in ozone-fumigated spinach leaves. Plant Physiol. 94, 773–780.
Sakaki, T., Saito, K., Kawaguchi, A., Kondo, N.and Yamada, M. (1990b) Conversion of monogalactosyldiacylglycerols to triacylglycerols in ozone-fumigated spinach leaves. Plant Physiol. 94, 766–772.
Salas, J.J. and Ohlrogge, J.B.(2002) Characterization of substrate specificity of plant FatA and FatB acyl-ACP thioesterases. Arch. Biochem. Biophys. 403, 25–34.
Salehi, H., Ransom, C.B., Oraby, H.F., Seddighi, Z.and Sticklen, M.B. (2005) Delay in flowering and increase in biomass of transgenic tobacco expressing the Arabidopsis floral repressor gene FLOWERING LOCUS C. J. Plant Physiol. 162, 711–717.
Santos Mendoza, M., Dubreucq, B., Miquel, M., Caboche, M. and Lepiniec, L. (2005) LEAFY COTYLEDON 2 activation is sufficient to trigger the accumulation of oil and seed specific mRNAs in Arabidopsis leaves. FEBS Lett. 579, 4666–4670.
Santos-Mendoza, M., Dubreucq, B., Baud, S., Parcy, F., Caboche, M. and Lepiniec, L. (2008) Deciphering the regulatory networks that control seed development and maturation in Arabidopsis. Plant J. 54, 608–620.
Schwender, J., Goffman, F., Ohlrogge, J.B. and Shachar-Hill, Y. (2004) Rubisco without the Calvin cycle improves the carbon efficiency of developing green seeds. Nature, 432, 779–782.
Serdari, A., Lois, E. and Stournas, S. (1999) Impact of esters of mono- and dicarboxylic acids on diesel fuel quality. Ind. Eng. Chem. Res. 38, 3543–3548.
Stournas, S., Lois, E. and Serdari, A. (1995) Effects of fatty-acid derivatives on the ignition quality and cold flow of diesel fuel. J. Am. Oil Chem. Soc. 72, 433–437.
Tat, M.E., Wang, P.S., Van Gerpen, J.H. and Clemente, T.E. (2007) Exhaust emissions from an engine fueled with biodiesel from high-oleic soybeans. J. Am. Oil Chem. Soc. 84, 865–869.
Taylor, D.C., Katavic, V., Zou, J.T. et al. (2002) Field testing of transgenic rapeseed cv. Hero transformed with a yeast sn-2 acyltransferase results in increased oil content, erucic acid content and seed yield. Mol. Breed. 8, 317–322.
Thelen, J.J. and Ohlrogge, J.B. (2002a) Both antisense and sense expression of biotin carboxyl carrier protein isoform 2 inactivates the plastid acetyl-coenzyme A carboxylase in Arabidopsis thaliana. Plant J. 32, 419–431.
Thelen, J.J. and Ohlrogge, J.B. (2002b) Metabolic engineering of fatty acid biosynthesis in plants. Metab. Eng. 4, 12–21.
Tsukagoshi, H., Morikami, A. and Nakamura, K.(2007) Two B3 domain transcriptional repressors prevent sugar-inducible expression of seed maturation genes in Arabidopsis seedlings. Proc. Natl Acad. Sci. USA, 104, 2543–2547.
US Department of Agriculture (2007a) An Analysis of the Effects of an Expansion in Biofuel Demand on U.S. Agriculture. Washington, DC: The Economic Research Service and Office of the Chief Economist, US Department of Agriculture.
US Department of Agriculture (2007b) Oilseeds: World Markets and Trade. Circular Series FOP 09-07. Washington, DC: Foreign Agricultural Service, US Department of Agriculture.
US Department of Energy(2007) Annual Energy Outlook 2007. Report Number DOE/EIA-0383. Washington, DC: Energy Information Administration, US Department of Energy.
Vigeolas, H. and Geigenberger, P. (2004) Increased levels of glycerol-3-phosphate lead to a stimulation of flux into triacylglycerol synthesis after supplying glycerol to developing seeds of Brassica napus L. in planta. Planta, 219, 827–835.
Vigeolas, H., Waldeck, P., Zank, T. and Geigenberger, P. (2007) Increasing seed oil content in oil-seed rape (Brassica napus L.) by over-expression of a yeast glycerol-3-phosphate dehydrogenase under the control of a seed-specific promoter. Plant Biotechnol. J. 5, 431–441.
Wang, G., Lin, Q.Q. and Xu, Y. (2007) Tetraena mongolica Maxim can accumulate large amounts of triacylglycerol in phloem cells and xylem parenchyma of stems. Phytochemistry, 68, 2112–2117.
White, J.A., Todd, T., Newman, T., Focks, N., Girke, T., De Ilarduya, O.M., Jaworski, J.G., Ohlrogge, J.B. and Benning, C. (2000) A new set of Arabidopsis expressed sequence tags from developing seeds. The metabolic pathway from carbohydrates to seed oil. Plant Physiol. 124, 1582–1594.
White, S.W., Zheng, J., Zhang, Y.M. and Rock, C.O.(2005) The structural biology of type II fatty acid biosynthesis. Annu. Rev. Biochem. 74, 791–831.
Wu, L. and Birch, R.G.(2007) Doubled sugar content in sugarcane plants modified to produce a sucrose isomer. Plant Biotechnol. J. 5, 109–117.
Xu, C.C., Fan, J., Froehlich, J.E., Awai, K. and Benning, C. (2005) Mutation of the TGD1 chloroplast envelope protein affects phosphatidate metabolism in Arabidopsis. Plant Cell, 17, 3094–3110.
Zhang, H.Y., Hanna, M.A., Ali, Y. and Nan, L. (1996) Yellow nut-sedge (Cyperus esculentus L) tuber oil as a fuel. Ind. Crops Prod. 5, 177–181.
Zou, J.T., Katavic, V., Giblin, E.M., Barton, D.L., MacKenzie, S.L., Keller, W.A., Hu, X. and Taylor, D.C. (1997) Modification of seed oil content and acyl composition in the brassicaceae by expression of a yeast sn-2 acyltransferase gene. Plant Cell, 9, 909–923.
Zou, J.T., Wei, Y.D., Jako, C., Kumar, A., Selvaraj, G. and Taylor, D.C. (1999) The Arabidopsis thaliana TAG1mutant has a mutation in a diacylglycerol acyltransferase gene. Plant J. 19, 645–653.
다운로드 맨위로